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We propose a novel method for the automatic segmentation of brain MRI images by using discriminative dic-
tionary learning and sparse coding techniques. In the proposed method, dictionaries and classifiers are
learned simultaneously from a set of brain atlases, which can then be used for the reconstruction and seg-
mentation of an unseen target image. The proposed segmentation strategy is based on image reconstruction,
which is in contrast to most existing atlas-based labeling approaches that rely on comparing image similar-
ities between atlases and target images. In addition, we propose a Fixed Discriminative Dictionary Learning
for Segmentation (F-DDLS) strategy, which can learn dictionaries offline and perform segmentations online,
enabling a significant speed-up in the segmentation stage. The proposed method has been evaluated for the
hippocampus segmentation of 80 healthy ICBM subjects and 202 ADNI images. The robustness of the pro-
posed method, especially of our F-DDLS strategy, was validated by training and testing on different subject
groups in the ADNI database. The influence of different parameters was studied and the performance of
the proposed method was also compared with that of the nonlocal patch-based approach. The proposed
method achieved a median Dice coefficient of 0.879 on 202 ADNI images and 0.890 on 80 ICBM subjects,
which is competitive compared with state-of-the-art methods.

© 2013 Elsevier Inc. All rights reserved.
Introduction

The accurate and robust labeling of anatomical structures is an es-
sential step in quantitative brain magnetic resonance imaging (MRI)
analysis. Many clinical applications rely on the segmentation of MRI
brain structures, which enables us to describe how brain anatomy
changes during aging or disease progression. Since manual labeling
by clinical experts is subject to inter and intra rater variability and
is also a highly laborious task, an automated technique is desirable
to enable a routine analysis of brain MRIs in clinical use. Despite the
large number of existing techniques (Aljabar et al., 2009; Chupin et
al., 2007; Collins and Pruessner, 2010; Coupé et al., 2011; Van der
Lijn et al., 2008; Wang et al., 2011a; Wolz et al., 2010), it still remains
a challenging task to develop fast and accurate automated segmenta-
tion methods due to the complexity of subcortical structures.
ained from the ADNI database
ithin the ADNI contributed to
d data but did not participate
of ADNI investigators can be
Authorship_list.pdf.

rights reserved.
Many automated methods have been introduced to extract cortical
and subcortical structures in the past decade. Among them, atlas-based
methods have been shown to outperform other state-of-the-art algo-
rithms (Babalola et al., 2009; Collins et al., 1995). In atlas-based label
propagation, an atlas is matched to the target image using image regis-
tration. The segmentation of the target image is then achieved by
warping the atlas label to the target image space. Segmentation errors
produced by atlas-based methods can be classified into random errors
and systematic errors (Aljabar et al., 2009; Wang et al., 2011a). Random
errors, which may be caused by image noise or subject variation, can
be reduced by using multiple atlases (Heckemann et al., 2006; Rohlfing
et al., 2004) or by selecting the most similar atlases for a given unseen
image (Aljabar et al., 2009; Artaechevarria et al., 2009; Barnes et al.,
2008). Systematic errors occur consistently as the disagreement between
manual and automatic segmentations exhibits a systematic pattern,
whichmay be caused by consistent errors in the registration, partial vol-
ume effects or bias in the manual labeling of the atlases. For example, a
manual segmentation protocolmay followa specific anatomical criterion
to assign labels to different voxels. However, an automatic method may
employ a slightly different criterion,which causes systematic labeling er-
rors. Recentwork has been proposed to reduce such errors such as inten-
sity models (Lotjonen et al., 2010; Van der Lijn et al., 2008; Wolz et al.,
2009) or a learning-based method (Wang et al., 2011a). Several label
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fusion techniques have also been used to improve segmentation accura-
cy of the multi-atlas segmentation method such as majority voting
(Aljabar et al., 2009; Collins and Pruessner, 2010; Kittler, 1998), STAPLE
(Warfield et al., 2004) and local weighted label fusion (Artaechevarria
et al., 2009; Khan et al., 2011; Sabuncu et al., 2010; Wang et al., 2011b,
2011c). However, multi-atlas segmentation requires pairwise, accurate
registrations between atlas and target, which can result in a significant
computational burden.

Recently, nonlocal patch-based segmentation techniques have
been proposed (Coupé et al., 2011, 2012; Rousseau et al., 2011) to
avoid the need of accurate non-rigid registration in order to gain com-
putational efficiency. Instead of fusing propagated label maps as in
multi-atlas segmentation, this method obtains a label for every voxel
by using similar image patches from coarsely aligned atlases. First,
image patches are extracted in a predefined neighborhood around a
particular voxel and across the training atlases. Then, weights are
given to these patches according to the similarity between the target
patch and the extracted atlas patches. The final label of the target
voxel is estimated by fusing the labels of the central voxels in the tem-
plate patch library. Such a technique allows one-to-many correspon-
dences to select the most similar patches for label fusion, and a
validation on hippocampus segmentation (Coupé et al., 2011, 2012)
demonstrates a high accuracy of this approach.

Although the localweighting label fusion strategy (Artaechevarria et
al., 2009; Khan et al., 2011; Sabuncu et al., 2010; Wang et al., 2011b,
2011c) or the nonlocal patch-based technique (Coupé et al., 2011,
2012; Eskildsen et al., 2011; Rousseau et al., 2011) can produce accurate
segmentation results, these methods are based on the similarity of
image patches extracted from each atlas. However, image similarities
over small image patches may not be an optimal estimator (Wang
and Yushkevich, 2012). In this paper, we propose a novel segmentation
method based on image patch reconstruction. The proposed approach
uses discriminative dictionary learning methods (Jiang et al., 2011;
Yang et al., 2011a; Zhang and Li, 2010) and sparse coding techniques
(Wright et al., 2009). These methods have been successfully applied
to different problems in face recognition (Jiang et al., 2011; Wright et
al., 2009; Yang et al., 2011a; Zhang and Li, 2010). To the best of our
knowledge, these methods have never been used in subcortical brain
segmentation. The proposed method learns discriminative appearance
dictionaries and is different from the recent work in Zhang et al.
(2012), which learns shape dictionaries for liver segmentations. In the
proposed method, we abandon the conventional idea to compare the
similarity between patches in a neighborhood. Instead, a dictionary
and a linear classifier are learned from the template patch library simul-
taneously for every voxel in the target image. The surrounding patch of
the target voxel can be reconstructed by the corresponding dictionary
and the label of the target voxel will be estimated by the corresponding
classifier. Moreover, a new strategy has been proposed to implement
the method in an efficient way by learning dictionaries offline and
performing segmentation online.

In the remainder, we will first introduce the methodology of
discriminative dictionary learning and how we apply it to the segmen-
tation of brainMR images. The proposedmethodwas evaluated on hip-
pocampus segmentations on 202 ADNI images (Mueller et al., 2005)
and 80 healthy ICBM subjects (Mazziotta et al., 1995). We studied the
influence of different parameters and compared the performance of
the proposedmethodswith that of the nonlocal patch-based technique.
Table 1
Demographic information describing 202 ADNI images used in this study.

Number Age MMSE

Normal 68 76.31 ± 5.20 [62–88] 29.18 ± 0.88 [26–30]
SMCI 49 74.96 ± 7.28 [60–89] 27.55 ± 1.67 [24–30]
PMCI 44 75.38 ± 6.92 [60–88] 26.80 ± 1.69 [24–30]
AD 41 76.08 ± 7.23 [56–87] 23.12 ± 1.79 [20–26]
The performance of different methods has been compared on different
subject groups of the ADNI dataset. Finally, we discuss the strengths and
weaknesses of the proposed method and conclude the paper.

Materials and methods

Datasets

Two different datasets were used for hippocampus segmentations.
Images obtained from the Alzheimer's Disease Neuroimaging Initiative
(ADNI) database (www.loni.ucla.edu/ADNI) (Mueller et al., 2005) and
images obtained from the International Consortium for Brain Mapping
(ICBM) database (Mazziotta et al., 1995) were used to evaluate the pro-
posed approach.

In the ADNI study, brain MR images are acquired at regular intervals
from approximately 200 cognitively normal older individuals, 400 peo-
ple with Mild Cognitive Impairment (MCI), and 200 people with early
AD. Amore detailed description of theADNI study is given inA. The sub-
groupwe used consists of 202 subjects obtained fromdifferent scanners
(68 normal subjects, 93 subjects withMCI and 41 patients with AD). An
overview of these 202 subjects is shown in Table 1. These 202 images
were selected because their reference segmentations are available
through ADNI. The selected subgroup is representative of the whole
ADNI dataset as no significant difference was observed on age and
MMSE scores between the selected group and the whole dataset on
Student's t-test (p > 0.1). A commercially available high dimensional
brainmapping tool (Medtronic SurgicalNavigation Technologies, Louis-
ville, CO) was used to carry out semi-automated hippocampal
volumetry for defining these reference segmentations. These label
maps were inspected and if necessary manually corrected by qualified
reviewers (Hsu et al., 2002).

For a direct comparison with the previously published patch-based
method, the proposed method was also evaluated on a subset of the
ICBM dataset, which consists of 80 healthy subjects (Mazziotta et al.,
1995). The T1-weighted data were acquired at the Montreal Neu-
rological Institute on a Philips Gyroscan 1.5 T scanner with 3D
spoiled gradient-echo acquisition with TR = 17 ms, TE = 10 ms,
flip angle = 30°, and a resolution of 1 mm3 voxels. The 80 sub-
jects consist of 39 males and 41females of similar ages (mean age:
25.09 ± 4.9 years). The MR images were manually segmented by an
expert directly in stereotaxic space using the protocol described in
Pruessner et al. (2000). The resulting segmentations obtained an
intraclass reliability coefficient (ICC) of 0.900 for inter-rater reliability
(4 raters) and 0.925 for intra-rater reliability (5 repeats).

Overview of the method

The basic assumption of non-local means patch-based segmenta-
tion is that the central voxels of similar patches are considered to be-
long to the same structure (Coupé et al., 2011). This method assigns
higher weights to similar patches and smaller weights to dissimilar
patches. As a result, similar patches from each training atlas contrib-
ute more to the final label estimation. The assumption of our method
is that the target patch which will be labeled can be represented by a
few template patches from the same structure in a low-dimensional
manifold or by a few representative atoms from a learned dictionary.
After the coding of the target patch, the target voxel is labeled based
on the coding coefficients and the dictionary. Therefore, there are two
phases for labeling a voxel in the proposed method: coding and clas-
sification. In the proposed method, a different dictionary is learned
for labeling each different target voxel, which means that the learned
dictionaries are voxel based. Based on different types of dictionaries
used for coding, we divided our proposed method into two groups:
sparse representation classification (SRC) (Tong et al., 2012) and Dis-
criminative Dictionary Learning for Segmentation (DDLS).

http://www.loni.ucla.edu/ADNI
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For SRC, the whole template patch library is directly defined as the
dictionary for sparse coding. In this predefined dictionary, each atom
is a patch extracted from an atlas image and we then know the corre-
sponding labels of all the atoms. After the target patch is coded by this
predefined dictionary, the labeling of the target voxel is done by
assessing which group of patches provides the minimal reconstruc-
tion error.

However, the direct way of using all the training patches as the
dictionary may result in a huge size for the dictionary, increasing
the coding complexity. In addition, this predefined dictionary may
not fully exploit the discriminative information in the training patch
library. In this paper, we also extend the proposed SRC method by
learning discriminative dictionaries for segmentation. In this DDLS
method, a small-sized dictionary and a linear classifier are learned
from the template training patch library, which will provide recon-
structive and discriminative information for MR brain segmentation
work. Fig. 1 demonstrates the proposed segmentation process for
one target voxel and compares the major differences with non-local
means patch-based methods.

In the proposed SRC and DDLS approaches, the coding procedure by
dictionaries replaces the patch similarity weighting in the patch-based
segmentation strategy. However, each subject is segmented by learning
specific dictionaries from the atlas database, whichwill be computation-
ally expensive. The ultimate goal of ourwork is to learnfixed dictionaries
and classifiers offline. Then, segmentations can be performed online by
Fig. 1. Flow chart of labeling one target voxel by three different methods: Patch-based Labe
for Segmentation (DDLS). The red box in the target image represents the target patch. The
patches.
using the fixed dictionaries and classifiers. In order to do this, we also
proposed a Fixed Discriminative Dictionary Learning for Segmentation
(F-DDLS) strategy, which could enable a significant speed-up in the seg-
mentation phase. This F-DDLS strategy has been evaluated on the ICBM
dataset and different subject groups of the ADNI dataset.

Sparse representation classification

The SRC method uses a template patch library as a predefined dictio-
nary. First, the extraction of apatch library fromatlaseswill be introduced.
Then, this predefined dictionary will be used for the reconstruction of a
target patch and the sparse coding process will be introduced. Finally,
the sparse representation of the target patch and the labels of center
voxels of template patches will be used for estimating the label of the tar-
get voxel.

Construction of patch library: First, atlas selection is carried out for
every target subject based on the sum of squared intensity differences
(SSD) in a template space as done in Coupé et al. (2011). Then for label-
ing a target voxel in the target image, the surrounding patch (illustrated
by the red box overlaid on the target image in Fig. 1) is extracted and
denoted as the target patch pt in this paper. A search volume Vi (illus-
trated by the blue box overlaid on the atlas images in Fig. 1) is defined
in each atlas image. All template patches in the search volume across
a set of similar atlases are extracted to form a patch library. The number
of patches in the patch library is proportional to the search volume size
ling, sparse representation classification (SRC) and Discriminative Dictionary Learning
blue boxes in atlas images represent the search volume area for extracting template



14 T. Tong et al. / NeuroImage 76 (2013) 11–23
and typically contains thousands of patches. Each patch in the li-
brary is a volume. We denote each patch as a column vector and
group all the patches together as a matrix PL. Suppose that the
patch library contains n patches, then the patch library can be rep-
resented as PL = [p1,p2,⋯,pn] ∈ Rm × n.

Inspired by work in face recognition (Wright et al., 2009), we pro-
pose to use a sparse representation classification strategy for patch
selection and weighting. In the SRC method, the patch library is di-
rectly considered as a dictionary, so the target patch pt will approxi-
mately lie in the subspace spanned by the training patches in the
library PL:

pt ¼ a1p1 þ a2p2 þ ⋯þ anpn: ð1Þ

Since the SRC method imposes a constraint that the representation is
sparse, most of the coefficients ai will be zero. Let a = [a1,a2,⋯,an] ∈ Rn,
then the sparse solution can be obtained by solving the following equa-
tion:

â ¼ min
a

ak k0 subject to pt−PLak k22≤ε ð2Þ

where the l0-normdenotes the number of nonzero coefficients,which is
the sparse constraint of this equation. The linear system pt = PLa is
underdetermined since n > m, so this equation does not have a unique
solution. It is difficult to approximate the sparsest solution of an
underdetermined system of linear equations because the problem is
NP-hard. In general, if the solution of Eq. (2) is sparse enough, then it
can be shown to be equivalent to the solution of the following
l1-minimization problem (Wright et al., 2009):

â ¼ min
a

ak k1 subject to pt−PLak k22≤ε: ð3Þ

Eq. (3) can be solved efficiently by several sparse coding methods
(Yang et al., 2010). In Wright et al. (2009), Eq. (3) was solved using
the Lasso method (Tibshirani, 1996). The L1 Lasso is a relaxed version
of Eq. (3). However, if the number of predictors (n) is much higher
than the number of observations (k), the Elastic Net (EN) approach
always outperforms the Lasso method for achieving a satisfactory var-
iable selection (Zou and Hastie, 2005). Considering that the number
of patches in the library is much higher than the number of patches
selected for representation, our case belongs to this ‘large n small k’
problem. To achieve robust sparse representations, EN (Zou and
Hastie, 2005) has been used for obtaining the sparse coding coeffi-
cients:

â ¼ min
a

1
2

pt−PLak k22 þ λ1 ak k1 þ
λ2

2
ak k22: ð4Þ

Eq. (4) adds a coefficient magnitude penalty to the objective func-
tion in Eq. (3), which is a convex combination of L1 lasso and L2 ridge
penalties. EN encourages a grouping effect while keeping a similar
sparsity of representation (Zou and Hastie, 2005). This grouping ef-
fect, which selects groups of highly correlated variables, is helpful
for the final classification and could thus improve the segmentation
performance.

After we obtain the sparse solution, the labeling of the target voxel
is based on the coding coefficients â and the selected patches for rep-
resentation. The main idea is that the sparse nonzero coefficients
should concentrate on the training patches with the same class label
as the target patch. This means that the training patches from the cor-
rect class will yield the minimal reconstruction error when the coding
coefficients are computed using training patches from all classes.
There are two key points in our assumption. First, the coding coeffi-
cients are very sparse. In fact, both the training patches from the cor-
rect class and the wrong class can represent the target patch very well
if enough training patches from each class are given. However, when
the sparsity is imposed on the coding coefficients, each class can only
use a few patches to represent the target patch. In this case, the train-
ing patches from the correct class are likely to represent the target
patch with less error. Second, the coding coefficients are computed
using all classes, which also helps for classification. This is because
the training patches from each class will compete to represent the
target patch in the same process. These two points were verified in
Yang et al. (2011b). Therefore, the labeling of the target voxel is
achieved by comparing which class of training patches gives the min-
imal reconstruction error. The residual (reconstruction error) with
the sparse coefficients âj associated to each structure/class j is de-
scribed as:

rj ptð Þ ¼ pt−PjLâ
j

��� ���: ð5Þ

The label value v for the center voxel of target patch pt is assigned
as the class with the minimum residual over all classes:

v ¼ argmin
j

rj ptð Þ
� �

j ¼ 1;…C: ð6Þ

In our case, the patches associated with non-zero coefficients are
divided into two groups (C = 2): patches belonging to the hippo-
campus and patches belonging to the background. If the patches be-
longing to the hippocampus can represent the target patch pt with a
smaller reconstruction error, then the target voxel is labeled as hippo-
campus, and vice versa.

Discriminative dictionary learning

In the above SRC scheme, a large number of training patches are di-
rectly used as thepredefined dictionary, whichwill increase the compu-
tational burden on the sparse coding process. Also, this predefined
dictionary may not fully exploit the discriminative information in the
training patch library. These drawbacks may be overcome by learning
a small-sized task-specific dictionary. Several methods have been pro-
posed for learning a small-sized dictionary (Jiang et al., 2011; Mairal
et al., 2008, 2009b; Yang et al., 2011a; Zhang and Li, 2010) that has
good reconstructive power and discriminative ability. In particular,
the method proposed in Zhang and Li (2010) incorporated the classifi-
cation error into the objective function of the K-SVD algorithm, which
allows to learn the dictionary and the classifier by the same optimiza-
tion procedure simultaneously. In this paper, we used a similar idea as
described in Zhang and Li (2010) for our segmentation purpose. Let
PL = [p1,p2,⋯,pn] ∈ Rm × n denote the training patch library, containing
n patches. A reconstructive dictionary with K atoms can be learned
from the input patch library PL by solving the following problem:

D;αh i ¼ argmin
D;α

PL−Dαk k22 subject to αk k0≤T ð7Þ

where D = [d1,d2,⋯,dK] ∈ Rm × K is the learned dictionary. α ∈ Rn × K is
the sparse coding coefficient matrix of the input patch library, and T is a
sparsity constraint parameter. In Eq. (7), the objective function includes
the reconstruction error term and the sparsity constraint term without
considering the discriminative power. Thus, the learned dictionary is
not suitable for our classification task. To address this problem, a linear
classifier f(α,W) = Wα as in Zhang and Li (2010)was added to the objec-
tive function for learning dictionaries with both reconstructive and dis-
criminative power. The objective function can then be defined as follows:

D;W;αh i ¼ argmin
D;W ;α

PL−Dαk k22 þ β1 H−Wαk k22
subject to αk k0≤T

ð8Þ

where the classification error term ‖H − Wα‖22 is added to Eq. (7).H rep-
resents the labels of the central voxels of the patches in the library PL. Each
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columnofH is a label vector corresponding to a template patch. Each label
vector is defined as hi = [0,0…1…0,0], where the non-zero entry posi-
tion indicates the label of the center voxel of the corresponding patch.
W denotes the linear classifier parameters and β1 controls the trade-off
between the reconstruction error term and the classification error term.

In Jiang et al. (2011) and Zhang and Li (2010), the problem of
Eq. (8) was solved by using the K-SVD algorithm since only one dic-
tionary was required for the face recognition task under study. How-
ever, due to the high anatomical variability across subjects' brain
scans, it is difficult to achieve good segmentation performance by
just learning one dictionary and a single global classifier. Therefore,
in our work, a dictionary and a corresponding classifier are learned
for every target voxel. In this case, there will be thousands of dictio-
naries to be learned for every target subject and it will be very com-
putationally expensive if the K-SVD algorithm is used for solving
Eq. (8). Here, we use an online dictionary learning algorithm as pro-
posed in Mairal et al. (2009a), which has faster performance and gen-
erates better dictionaries than classical batch learning algorithms.
Appendix B shows how Eq. (8) is solved by using the online dictionary
learning algorithm.

After Eq. (8) is solved, a dictionary D̂t and a classifier Ŵ are
learned for every target voxel. Fig. 2 shows an example of the learned
dictionary D̂t . For labeling the target voxel, the surrounding patch pt is
first extracted. Then, the sparse representation α̂ t of the target patch
pt is computed by solving the following problem:

α̂ t ¼ argmin
αt

pt−D̂tαt

��� ���2
2
þ β2 αtk k1: ð9Þ

Eq. (9) is a relaxed version of Eq. (3). Finally, we can estimate the
label value v of the target voxel by using the linear predictive classifi-
er:

ht ¼ Ŵt α̂ t

v ¼ argmax
j

ht jð Þ

8<
: ð10Þ

where ht is the class label vector for the target voxel. The label value v
of the target voxel is decided by the index of the largest element in
label vector ht. Ideally, ht will be {0,0, ⋯,1, ⋯,0,0} with only one
non-zero element, indicating the label of the class. In our binary
Fig. 2. An example of a learned dictionary. The dictionary has 16 × 16 atoms of size 53.
This figure shows a slice of this dictionary.
segmentation, there are only two elements in label vector ht, the
values of which indicate the probability belonging to hippocampus
and the probability belonging to the background respectively.

Experiments and results

The proposed methods were applied to 202 images from the ADNI
database and 80 images from the ICBM database. The ADNI images
were preprocessed by the ADNI pipline described in Jack et al.
(2008) and the ICBM images were preprocessed as described in
Coupé et al. (2011, 2012). All images were linearly registered to the
MNI152 template space by using affine registrations. Image intensi-
ties were then normalized by using the method proposed in Nyul
and Udupa (2000). After that, intensities were rescaled to the interval
[0 100]. Finally, a leave-one-out procedure was used in our validation
and the most similar subjects were selected by comparing the
squared intensity differences (SSD) in the MNI152 template space
as described in the “Sparse representation classification” section.

For the ADNI images, all segmentations were performed in the na-
tive image space because the reference segmentations of the hippo-
campus are defined in native space. Transforming the labels and MR
images into template space would decrease label accuracy due to in-
terpolation artifacts of the target reference segmentations. After atlas
selection in the MNI152 template space, we affinely transformed the
selected atlases and labels to the native space of the target image to
perform the segmentation in the target coordinate system.

For the ICBM images, all the segmentations were performed in the
MNI152 template space as the labels are defined in the template
space. The influence of different parameterswas studied on segmenting
the hippocampus on the 202 ADNI images. After the optimal parame-
ters were estimated, both datasets were used to compare the perfor-
mance of different methods.

For learning dictionaries, the parameter β1 in Eq. (B.2) was set to 1
and β2 was set to 0.15 for all experiments. β2 was determined via
cross validation according to the parameter settings described in
Mairal et al. (2012). During parameter optimization, when a certain
parameter was optimized, the other parameters were set to fixed
values. Since neighborhood voxels share most of the template patches
and will have very similar dictionaries and classifiers, we used a sam-
pling strategy to train the dictionaries in order to achieve a better per-
formance. Dictionaries are trained for every n (n > 1) voxels rather
than every voxel. In theory, this strategy will achieve an approximate
n3 speedup for the training process. In order to label target voxels
without a corresponding dictionary, we use neighbor dictionaries to
perform sparse coding for its target patch. Since neighborhood voxels
share most of their template patches and will have very similar dic-
tionaries and classifiers, this sampling strategy will not result in a
dramatic degradation of the segmentation accuracy. In our 3D seg-
mentation work, we used 6 nearest neighbor dictionaries for sparse
coding for all experiments. By using the same classification strategy,
we could obtain 6 class label vectors for the target voxel. The final
label value is estimated by using the average of these label vectors. Fi-
nally, all the experiments were evaluated by computing the Dice co-
efficient between the reference segmentations and the automated
segmentations.

Influence of parameters for dictionary training

First, experiments were carried out to study the influence of the
dictionary size K (the number of atoms in each dictionary) on seg-
mentation accuracy. 10 atlases from the ADNI dataset were selected
in a leave-one-out procedure for each target image. We found that
the larger the size of dictionaries was, the higher the achieved overlap
value was. However, the improvement using K > 256 over K > 256 is
not significant and more time is required for learning a larger size of
dictionaries. Considering the trade-off between computational time

image of Fig.�2


Fig. 4. Effect of sampling step size on segmentation accuracy. The results were obtained
by using a patch size of 5 × 5 × 5 voxels and a search volume of 7 × 7 × 7 voxels,
extracted from the 10 most similar atlases.
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and segmentation accuracy, we chose K > 256 for the following ex-
periments according to the results shown in Fig. 3.

Since a sampling strategy was used for learning dictionaries, the in-
fluence of the sampling step size l on segmentation accuracy was also
studied. The sampling step size l means that dictionaries are trained
for every lth voxel. As expected, the smaller sampling step size we
used for learning dictionaries, the more dictionaries we could get and
the higher median Dice index could be achieved. However, we could
gain more computational efficiency by learning fewer dictionaries.
Based on the results shown in Fig. 4, a sampling step size of 3 (every
third voxels for learning dictionaries) is a good choice for balancing
the speed and accuracy of the proposed method.

Influence of patch size and neighborhood size

The influence of patch size and neighborhood size was also stud-
ied on the ADNI dataset. The patch size is related to the local geome-
try and the neighborhood size reflects the anatomical variability
(Coupé et al., 2011). The Dice coefficient distributions over varying
patch and neighborhood sizes are presented in Figs. 5 and 6. The
best median Dice coefficient was obtained with a patch size of
5 × 5 × 5 and a neighborhood size of 7 × 7 × 7. Therefore, we used
these parameter settings for all other experiments.

Influence of the number of training atlases

We also studied the impact of the number of training atlases on
the performance of the proposed method. The results for varying
numbers of training atlases out of the 202 ADNI images are shown
in Fig. 7. As can be seen, increasing the number of training atlases pro-
vides higher median Dice overlap values. The best median Dice coef-
ficient is 0.879 by selecting 25 atlases, which is a small improvement
in comparison with a median Dice value of 0.872 by using 10 atlases.
As can be seen in Fig. 7, the median Dice coefficient stabilizes around
10 atlases, which is similar to the trends reported in Coupé et al.
(2011) and Rousseau et al. (2011). Therefore, we selected 10 atlases
in our experiments as this produces comparable results with a
Fig. 3. Effect of dictionary size on segmentation accuracy. The results were obtained by
using a patch size of 5 × 5 × 5 voxels and a search volume of 7 × 7 × 7 voxels,
extracted from the 10 most similar atlases. The sampling step size was set to 3 for
learning dictionaries.
significantly lower computational burden comparing to selecting 25
atlases, making the method more efficient and attractive.

Fixed Discriminative Dictionary Learning for Segmentation

The ultimate goal of our work is to learn fixed dictionaries offline.
Then the learned dictionaries can be used to efficiently perform seg-
mentation online. In order to do this, we randomly selected a subgroup
of the whole dataset as the training atlases. Then discriminative dictio-
naries were trained from these randomly selected training atlases. Fi-
nally, the same testing procedure as described in the “Discriminative
dictionary learning” section”was performed to segment the remaining
testing subjects. The F-DDLS strategy was evaluated on the 80 healthy
ICBMsubjects. 40 imageswere randomly selected for training dictionar-
ies and classifiers. The remaining 40 atlases were used for testing. The
experiment was repeated 10 times. The results are presented in Fig. 8.
The average median Dice coefficient is 0.887. These results indicate
Fig. 5. Effect of patch size on segmentation accuracy. The results were obtained by
using a search volume of 7 × 7 × 7 voxels, extracted from the 10 most similar atlases.
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Fig. 6. Effect of neighborhood size on segmentation accuracy. The results were obtained by using a patch size of 5 × 5 × 5 voxels, extracted from the 10 most similar atlases.
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that the proposed F-DDLS strategy can be performed in a computation-
ally more efficient way, while yielding comparable segmentation re-
sults. In particular, each unseen subject can be segmented in less than
1 min by using the proposed F-DDLS strategy.

Discriminative Dictionary Learning for Segmentation using Fixed Training
Dataset

For the ICBM dataset, all images were transformed to MNI template
space and the reference segmentations were then carried out in this
space. Since label images and MRIs are in the same space for the
whole dataset,fixed dictionaries can directly be learned in this common
space. For the ADNI dataset, the segmentations were performed in the
target image space because the reference segmentation is defined in
this space. We used a work-around to simulate a common space for
the whole dataset: after randomly selecting a fixed training subgroup,
dictionaries were learned after warping the training images to the test-
ing target image space. Although the learned dictionarieswere not fixed
in different spaces, they were learned from the fixed training dataset.
Therefore, the dictionaries can be regarded as identical dictionaries
transformed to different coordinate spaces.

We compared the results by using different numbers of training
atlases in the fixed subgroup. The results are presented in Fig. 9. By
using the simulated fixed discriminative dictionary learning strategy,
the median Dice coefficient is 0.864 when using 30 subjects for train-
ing and the remaining 172 subjects for testing. Although this is slight-
ly lower than the median Dice coefficient (0.879) by selecting 25
atlases in a leave-one-out procedure, it also demonstrates the effec-
tiveness of the proposed method.

We also tested the proposed simulated F-DDLS method on different
groups of data from ADNI. 30 healthy subjects were randomly selected
for training fixed dictionaries. Segmentations were then performed on
the 41 AD subjects by using the learned dictionaries from healthy sub-
jects. The performance of different methods on the 41 AD subjects is
presented in Fig. 10. It can be seen that DDLS achieved the highest
mean Dice coefficient of 0.866 for the segmentations of the 41 AD sub-
jects, which is much higher than a mean Dice coefficient of 0.826 by
using the nonlocal patch-based method. The mean Dice coefficient is
0.860 for the 41 AD subjects by using the simulated F-DDLS method,
which shows that the proposed method is able to generalize from one
type of data to morphologically different datasets.

Comparison with other methods

The proposed DDLS and SRC were compared with the nonlocal
patch-based technique proposed in Coupé et al. (2011). For the pro-
posed DDLS method, we used a sampling step size of 3, a patch size
of 5 × 5 × 5 and a neighborhood size of 7 × 7 × 7 as suggested in
the “Influence of patch size and neighborhood size” section. For SRC,
80 patches were selected for representation and classification. λ1

and λ2 were set to 0.15 for obtaining the sparse representation to
solve Eq. (4). These two parameters were determined via cross vali-
dation following the parameter settings described in Mairal et al.
(2012). For a fair comparison, the nonlocal patch-based method was
carried out in the same settings (a patch size of 7 × 7 × 7 voxels
and a search volume of 9 × 9 × 9 voxels) as described in Coupé et
al. (2011). The same patch preselection process as described in
Coupé et al. (2011) was performed for both patch-based method
and SRC method in order to reduce computational time.

For a direct and fair comparison with the nonlocal patch-basedmeth-
od, hippocampus segmentationswere performed on the 80 healthy ICBM
subjects in theMNI152 template space (Table 2). 20 atlaseswere selected
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Fig. 7. Effect of the number of training atlases on segmentation accuracy. The results were obtained by using a patch size of 5 × 5 × 5 voxels and a search volume of 7 × 7 × 7 voxels.
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in a leave-one-out procedure for each target image as suggested in Coupé
et al. (2011). The patch-based method obtained a median Dice value of
0.882, the proposed SRC approach obtained 0.888, and the proposed
DDLS obtained 0.890. Although the SRC method produces similar results
as those produced by DDLS, the latter can be implemented with a much
faster speed than the SRC method (as discussed in the next section).
Fig. 8. The performance of Fixed Discriminative Dictionary Learning on 80 ICBM subjects. The
7 × 7 × 7 voxels. The experiment was repeated 10 times. The average median Dice coeffici
The DDLS method obtained significantly better results than the
patch-based method with a p-value ≪ 0.001 using Student's two-tailed
paired t-test.

Hippocampus segmentations on the 202 ADNI images were
performed in the native image space. 10 atlases were selected in a
leave-one-out procedure for each target image. Table 3 presents the
results were obtained by using a patch size of 5 × 5 × 5 voxels and a search volume of
ent is 0.887.
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Fig. 9. Effect of the number of training atlases on the performance of Fixed Discriminative
Dictionary Learning. The results were obtained by using a patch size of 5 × 5 × 5 voxels
and a search volume of 7 × 7 × 7 voxels. The median Dice coefficient is 0.864 when
using 30 subjects for offline training and the remaining 172 subjects for online testing.
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medianDice coefficients of these three approaches. ThemedianDice co-
efficient is 0.872 by using the proposed DDLS and 0.871 by using SRC,
both of which is higher than the median Dice value of 0.844 by using
the nonlocal patch-based method. Fig. 11 provides a visual comparison
of the segmentation results by using these threemethods.We also com-
pared the performances of these threemethods on four different groups
of subjects. Fig. 12 shows the mean Dice coefficients for the segmenta-
tions of 68 control subjects, 49 stable MCI subjects, 44 progressive
MCI subjects and 41 AD patients. As revealed in Fig. 12, the segmenta-
tion accuracy decreases with disease progression, which indicates that
smaller hippocampi, due to atrophy, are more challenging for automat-
ed segmentation approaches.
Fig. 10. Comparison of Dice Coefficient Distribution of four methods on 41 AD subjects.
The results of F-DDLS were obtained by randomly selecting 30 healthy subjects for
training. The other results were obtained by using the 10 most similar atlases in a
leave-one-out procedure. The Patch-based and SRC methods were implemented by
using a patch size of 7 × 7 × 7 voxels and a search volume of 9 × 9 × 9 voxels. The
DDLS and F-DDLS methods were implemented by using a sampling step size of 3, a
patch size of 5 × 5 × 5 voxels and a search volume of 7 × 7 × 7 voxels.
Computational time

We implemented the DDLS and SRC methods in MATLAB 7.13.0
using C/MEX code. The SPAMS software (http://spams-devel.gforge.
inria.fr) was used for dictionary learning and sparse coding. Since the
patch-based method is not open source, we used our version in a
C++ implementation. The experiments were carried out using a single
core of an Intel Core i7-2600 processor at 3.4 GHz with 8 GB of RAM. It
took approximately 10 min for segmenting one subject by using the
patch-based method with a patch size of 7 × 7 × 7, a neighborhood
size of 9 × 9 × 9 and 10 similar atlases. The SRC method took around
40 min for segmenting one subject with the same parameter settings.
For the proposed DDLSmethod, it took 3–6 min to segment one subject
with the suggested parameter settings (a sampling step size of 3, a dic-
tionary size of 256, a patch size of 5 × 5 × 5, a neighborhood size of
7 × 7 × 7 and 10 similar atlases). However, if one wants to achieve
more accurate results by learning more dictionaries with a larger size,
it will be more time consuming. In addition, if fixed dictionaries are
trained offline, it only takes less than 1 min for segmenting one subject
in the testing stagewith less than a 1.5%-drop in Dice overlap compared
to the results by using the DDLS method.

Discussion and conclusion

In this workwe developed a novel approach for the segmentation of
subcortical brain structures. Dictionary learning and sparse coding tech-
niques have been proposed for the segmentation of brain MRI images.
In contrast to other methods that rely on intensity similarities, the pro-
posed method is based on the minimization of patch reconstruction
errors. Dictionaries and classifiers are learned fromatlases in one frame-
work simultaneously. The learned dictionaries can be used for patch re-
construction and the corresponding classifiers can be used for label
estimation. The proposed approach belongs to supervised learning
methods by exploiting the discriminative information in the patch li-
brary extracted from atlases. To the best of our knowledge, discrimina-
tive dictionary learning has never been used in subcortical brain
segmentation. The evaluation on hippocampus extraction of 202 ADNI
images and 80 healthy ICBM subjects demonstrates the accuracy and
robustness of the proposed method. The highest median Dice coeffi-
cient is 0.879 on ADNI dataset and 0.890 on ICBMdataset,which is com-
petitive compared with state-of-the-art methods.

In order to reduce the computational burden of the dictionary learn-
ing process, we combined the online algorithm (Mairal et al., 2009a)
with the discriminative dictionary learning approach (Zhang and Li,
2010). We also used a sampling strategy to learn the dictionaries so
that the runtime of training will be shortened significantly. The dictio-
nary and classifier related to one target voxel are learned from patches
extracted in a local search volume across the atlases. Therefore, neigh-
borhood voxels share most of template patches and will have very sim-
ilar dictionaries and classifiers. This means that neighborhood voxels
Table 2
Median Dice overlaps for 80 ICBM subjects. The numbers in bold represent the highest
Dice overlaps among different methods. The results of F-DDLS* were obtained by ran-
domly selecting 40 atlases for training and using the remaining 40 subjects for evalua-
tion. The experiment was repeated 10 times. The other results were obtained by using
the most similar 20 atlases in a leave-one-out procedure. The Patch-based and SRC
methods were implemented by using a patch size of 7 × 7 × 7 voxels and a search vol-
ume of 9 × 9 × 9 voxels. The DDLS and F-DDLS methods were implemented by using a
sampling step size of 3, a patch size of 5 × 5 × 5 voxels and a search volume of
7 × 7 × 7 voxels. The difference between Patch-based and DDLS is statistically signifi-
cant with p b 0.001 on Students two-tailed paired t-test.

Method Right hippocampus Left hippocampus Whole hippocampus

Patch-based 0.882 (0.026) 0.882 (0.025) 0.882 (0.022)
SRC 0.888 (0.023) 0.889 (0.021) 0.888 (0.019)
DDLS 0.892 (0.024) 0.887 (0.020) 0.890 (0.019)
F-DDLS* 0.888 (0.027) 0.886 (0.025) 0.887 (0.022)

http://spams-devel.gforge.inria.fr
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Table 3
Median Dice overlaps for 202 ADNI subjects. The numbers in bold represent the highest
Dice overlaps among different methods. The results of F-DDLS* were obtained by ran-
domly selecting 30 atlases for training and using the remaining 172 subjects for evalu-
ation. The other results were obtained by using the 10 most similar atlases in a
leave-one-out procedure. The Patch-based and SRC methods were implemented by
using a patch size of 7 × 7 × 7 voxels and a search volume of 9 × 9 × 9 voxels. The
DDLS and F-DDLS methods were implemented by using a sampling step size of 3, a
patch size of 5 × 5 × 5 voxels and a search volume of 7 × 7 × 7 voxels. The difference
between Patch-based and DDLS is statistically significant with p b 0.001 on Student's
two-tailed paired t-test.

Method Right hippocampus Left hippocampus Whole hippocampus

Patch-based 0.848 (0.032) 0.842 (0.029) 0.844 (0.027)
SRC 0.873 (0.027) 0.869 (0.026) 0.871 (0.022)
DDLS 0.872 (0.027) 0.872 (0.031) 0.872 (0.024)
F-DDLS* 0.865 (0.042) 0.859 (0.048) 0.864 (0.035)

Fig. 12. Comparison of mean Dice overlaps of three methods on four different groups.
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can share dictionaries and classifiers. This may explain why the pro-
posed sampling strategy still keeps almost the same accuracy, while
generating a much faster implementation. The proposed method also
uses affine registrations rather than non-rigid registrations in order to
gain computational efficiency as described in the non-local means
patch-based method (Coupé et al., 2011, 2012; Rousseau et al., 2011).
In the end, an unseen subject can be segmented in approximately
6 min while keeping a high segmentation accuracy.

Due to different datasets for evaluation and different qualities of
manual segmentations, comparisonwith state-of-the-artmethods is al-
ways difficult. Recent works (Aljabar et al., 2009; Barnes et al., 2008;
Chupin et al., 2007; Collins and Pruessner, 2010; Coupé et al., 2011;
Wang et al., 2011a; Wolz et al., 2010) reported Dice values greater
than 0.80 for hippocampus segmentation. Our approach can yield re-
sults comparable or more accurate than these recent published results.
Our proposedmethod was also evaluated on the same 80 healthy ICBM
subjects as those used for validations of methods proposed in Collins
and Pruessner (2010), Coupé et al. (2011), and Hu et al. (2011). A me-
dian Dice value of 0.87–0.886 was achieved in these works. In compar-
ison, ourmethod can achieve similar or slightly improved results with a
Fig. 11. Method comparison. Segmentation results were obtained by DDLS, SRC and the pa
worst Dice coefficients.
very fast implementation, especially compared to themulti-atlasmeth-
od as described in Collins and Pruessner (2010).

The results obtained on the ICBM dataset showed a higher Dice over-
lap (0.890) compared to the results on the ADNI dataset (0.879). The dif-
ference may come from the higher anatomical and scanner-based
variability within the 202 ADNI subjects compared to that of the 80
healthy ICBM subjects, who were scanned on the same scanner. In
addition, the improvement of the proposed DDLS method over the
patch-basedmethod is approximately 3% on the ADNI dataset compared
to only 1% on the ICBMdataset in terms of Dice overlap. This difference of
improvementmay be caused by several factors. First, the higher anatom-
ical variability of the ADNI dataset compared to the ICBM dataset might
make segmentations more challenging. Second, the preprocessing pipe-
lines involved for both datasets were not similar. For the ADNI dataset,
tch-based method for the subjects from ADNI dataset with the best, a median and the
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the used processing may be less optimal than the pipeline used for the
ICBM dataset. A less accurate intensity normalization might explain
the lower performance of the nonlocal patch-based method on the
ADNI dataset. However, this result highlights the robustness of the pro-
posed methods face of intensity normalization issues compared to
patch-based method. Contrary to the patch-based method, in the pro-
posedmethods the patches in the template librarywere normalized be-
fore used for leaning dictionaries. Finally, another reason may be that
the accuracy of the proposed DDLS method on ICBM dataset may
reach an upper bound because of the rater variability of manual labels
(Aljabar et al., 2009), resulting in a smaller improvement on this group.

In recent work (Shu et al., 2012; Wang et al., 2011b), sparse coding
techniques were also used for medical image segmentation. These
methods directly used training patches as dictionaries, which are simi-
lar to the proposed SRC approach except the label fusion strategy.
Weighted voting was used to fuse the labels in these approaches
while the reconstruction error was used in the proposed SRC method.
A further experiment was performed to compare these two different
label fusion strategies. Themedian Dice overlaps usingweighted voting
as the label fusion strategy are 0.870 (0.023) on the ADNI dataset and
0.887 (0.019) on the ICBM dataset respectively, which are nearly iden-
tical to the results by using reconstruction error as the label fusion strat-
egy (0.871 (0.022) and 0.888 (0.019) respectively). These results show
that bothweighted voting and reconstruction error can be chosen as re-
liable label fusion strategies. However, it should be noted that weighted
voting cannot be used to estimate the labels in the proposed DDLS and
F-DDLS approaches because the corresponding labels of the atoms in
the dictionaries are unknown.

Although the proposed method can produce accurate results in a
very efficient way, there are several aspects that may improve the pro-
posedmethod. (1) First, the proposed approachwill be improved if one
discriminative dictionary with a larger size is learned for every voxel
without using the sampling strategy. However, this will increase the
computational cost significantly. (2) The segmentation accuracy may
be improved ifmore complicated classifiers rather than linear classifiers
are learned (Mairal et al., 2008, 2009b). Moreover, the discriminative
information in the sparse coding coefficients could be also exploited
and added to the objective function (Yang et al., 2011a) to improve
the segmentation accuracy, although this may lead to a complicated op-
timization process of dictionary learning. (3) The use of non-registration
instead of affine registration may also improve the segmentation results
as reported in Fonov et al. (2012) and Rousseau et al. (2011). (4)Segmen-
tation accuracy may be improved by using intensity models (Lotjonen et
al., 2010; Wolz et al., 2009) or a learning-based method (Wang et al.,
2011a) to correct systematic errors of the proposed method.

In Section 3.4, we also used a fixed subgroup of subjects as atlases to
learn dictionaries and classifiers. The aim of this experiment was trying
to learn a new format of ‘atlases’ and ‘labels’. The dictionaries are learned
from atlas images, which will contain the information of atlas images
and can then be considered as new ‘atlases’. Also, the corresponding
classifiers contain the prior information of reference segmentations
and can then be considered as new ‘labels’. It may take several days to
learn very good representative dictionaries and optimal discriminative
classifiers offline. Once learned, it is possible to segment one target
image very quickly (less than 1 min) by using the new format of ‘atlases’
(dictionaries) and ‘labels’ (classifiers). Although the median Dice value
by using F-DDLS strategy drops slightly (less than 1.5%) compared to
the results by using the DDLS method, it indicates that this may be a
very potential direction for human brain labeling in future work.

When comparing the DDLS and F-DDLS methods, the DDLS method
can achieve a better performance because it selects the most similar
atlases for segmentationwhile in the F-DDLSmethod, atlases are random-
ly selected for segmentation, which indicates that the proposed method
will have a better performance if similar types of data are used. However,
the F-DDLS still achieves promising segmentation results. Thismeans that
this approach is able to segment images reliably without explicitly
choosing atlases similar to the test data. The further experiment that
was validated on different groups of datasets shows that the proposed
F-DDLSmethod is able to generalize from one type of data tomorpholog-
ically different datasets. Themain reasonmay be that the proposedmeth-
od learns dictionaries at a very localized level rather than a global one.
However, it should be noted that the dictionaries were trained on the
same imagingmodality (T1 images)with the samemanual segmentation
protocol in ourwork. If the segmentation protocol, acquisition protocol or
imaging modality changes, the dictionaries should be retrained.

Future research will focus on the extension of the proposed ap-
proach on the segmentation of multiple structures of brain MR images.
In this paper, we just applied the proposedmethod to the segmentation
of the hippocampus. However, it is possible to extend our proposed
method to segment multiple structure by adding the corresponding
label information to the label vector H in Eq. (8). In addition, we plan
to apply the proposed method to the measurement of hippocampal at-
rophy and patient classification as proposed in Coupé et al. (2012).
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Appendix A. The Alzheimer's Disease Neuroimaging Initiative

The Alzheimer's Disease Neuroimaging Initiative (ADNI) was
launched in 2003 by the National Institute on Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food
and Drug Administration (FDA), private pharmaceutical companies
and non-profit organizations, as a $60 million, 5-year public-private
partnership. The primary goal of ADNI has been to test whether serial
MRI, positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to
measure the progression of MCI and AD. Determination of sensitive
and specific markers of very early AD progression is intended to aid re-
searchers and clinicians to develop new treatments and monitor their
effectiveness, as well as lessen the time and cost of clinical trials. The
Principal Investigator of this initiative is Michael W. Weiner, M.D., VA
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Medical Center and University of California— San Francisco. ADNI is the
result of efforts ofmany co-investigators from a broad range of academ-
ic institutions and private corporations, and subjects have been
recruited from over 50 sites across the U.S. and Canada. The initial
goal of ADNI was to recruit 800 adults, ages 55 to 90, to participate in
the research— approximately 200 cognitively normal older individuals
to be followed for 3 years, 400 people with MCI to be followed for
3 years, and 200 people with early AD to be followed for 2 years. For
up-to-date information see www.adni-info.org.

Appendix B. Derivation of discriminative dictionary learning

For solving Eq. (8), we rewrite the equation as:

D;W;αh i ¼ argmin
D;W;α
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. Each column of the input
signal P̃L will thus include the original patch and its corresponding label
information. Each atom of dictionary D̃ is always normalized. We also
use the l1 norm to achieve a sparse solution for α in the dictionary opti-
mization process. Eq. (B.1) can be rewritten as:
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and can be efficiently solved by the online dictionary learning technique
described inMairal et al. (2009a). This online approach draws onepatch
from the patch library at a time for updating the dictionary. In our im-
plementation, a mini-batch strategy (Mairal et al., 2009a), which
draws a few patches at each iteration rather than a single patch, was
used to improve the convergence speed of online learning.

After online dictionary learning, we obtain a dictionary and a clas-
sifier for every target voxel. The corresponding dictionary and classi-
fier of the target patch pt can be represented as:
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where the learned dictionary and the corresponding classifier param-
eters are normalized jointly. As a result, we cannot use these dictio-
naries and the classifiers directly for labeling. However, the desired
dictionary D̂t and the classifier parameters Ŵ t can be computed
from D̃t:
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The proofs of Eq. (B.4) are available in Zhang and Li (2010).
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